INRA

Genomic prediction for phenology, forage yield and quality in alfalfa

Marie Pégard, Julien Leuenberger, Bernadette Julier and Philippe Barre

North American Alfalfa Improvement Conference – June 7th to 9th 2022

> EUCLEG

Breeding forage and grain legumes to increase EU's and China's protein self-sufficiency

- 26 partners in 13 EU countries, and 12 partners in China
- Overall objective: To develop efficient breeding strategies for the legume crops and improve:
 - diversification of crops
 - crop productivity
 - yield stability
 - protein content

Genetics as a major lever

p.2

INRAØ

Senomique Selection (GS)

GS is the direct descendant of marker-assisted selection (SAM)

> Aim of the study

To evaluate the ability of genomic prediction models to predict phenology, yield and quality traits Different parameters tested :

- The size of the training population
- Model

Previous work on Alfalfa

Found a low or moderate accuracies (0-0.65) for yield and quality traits:

- A number of SNPs from 8K to 44K
- A number of individuals between 75 and 274

What is new in our study?

- a larger population covering a large diversity, fall dormancy 2-8
- more SNPs
- the information from QTLs in the model prediction.

INRA

Genomic prediction of Lucerne for phenology, forage yield and quality NAAIC / June 7th to 9th 2022 / Marie PEGARD Annicchiarico *et al.*, 2015 Biazzi *et al.*, 2017 Jia *et al.*, 2018 Li *et al.*, 2015

Material and methods

> Research population

395 accessions comprised of 373 cultivars and 22 landraces One accession consists of a population

Origins (landraces : collected), cultivars (registered) :

- Europe : 313
- North America : 45
- South America : 16
- China : 17
- Middle East : 3
- Japan : 1

INRA

> Genotyping

395 accessions genotyped – 227K SNP with 0.57% of missing values 92.5 % of the SNPs are on the chromosomes

One accession consists of a population for which allele frequencies are estimated

Marker density over the genome Allelic frequency distribution Very low LD even at short (500 kb window size) distances chr8 chr6 chr7 25000 **Correlation between SNPs** Number of SNPs 118K SNP with MAF higher 25000 15000 than 0.05 value 300 \$ ₅₀₀₀₀ 200 100 5000 75000 0 0.0 0.1 0.2 0.3 0.4 0 Minor Allele Frequency chr1 chr2 chr3 chr5 chr6 chr4 chr7 chr8 Chromosomes

Reference sequence : Chen et al. 2020

Genomic prediction of Lucerne for phenology, forage yield and quality NAAIC / June 7th to 9th 2022 / Marie PEGARD

INRA

p.7

Distance (bp)

> Phenotyping

Lignin + cellulose

Many traits phenotyped (187) : dry matter yield, ligno-cellulose content (acid detergent fiber ADF), protein content, flowering date and autumn dormancy

Two trials established in 2018 :

- Lusignan FRA (382 accessions)
- Novi Sad SRB (395 accessions)

Scored during two years (2019 and 2020),4-5 cuts/year.

Phenotypes were adjusted :

- For the micro-environmental variation inside each trial by a bi-splines model
- For the year and the location effect.

INRA@

> Genetic diversity

PCA : ellipse based on the clustering

- Two groups were clearly separated from the others
- The five other groups showed a genetic continuum
- The European accessions as well as the American accessions were splitted into several groups.
- Fst values are really small
- The group 6 and 2 are the most distinct ones

Statiscal Methods & Results

Genome Wide Association Study (GWAS)

GWAS aims at determining the association between the phenotype and genotype

Some parameters influence the GWAS results :

- Linkage disequilibrium
- Population structure

Multi Locus Mixed Model (MLMM) :

- Includes the genomic relationship matrix to take into account the genetic structure in the population
- Stepwise model regression with a forward inclusion of the QTLs as co-factors and a backward elimination.

INRA@

Class 📙 Phenology 📕 Forage Yield 📕 Quality

Number of QTLs and the percentage of phenotypic variance explained

Values for both locations and all traits together (combined or per cut)

	Nb of traits	Nb of QTLs
Phenology	16	79
Forage yield	37	438
Quality	55	564

p. 12

Genomic selection (GS)

Test of the training/validation population size

We tested the effect of different Training population sizes :

The predicting ability is evaluated by the correlation between the true phenotypic value and the predicted phenotypic value of the validation population

INRAØ

S - results

Test of the training/validation population size

Model GBLUP for three independent traits belonging to the classes

When the number of accessions in the training population increases:

- The predicting ability increases
- The variability between repetitions decreases

Phenology > Quality > Forage Yield

In the next steps we used Training with 270 individuals

INRAØ

S GS Models

Four models :

- With the relationship matrix only \rightarrow GBLUP
- With the QTLs as fixed effects and the relationship matrix only \rightarrow QGBLUP
- Ridge regression \rightarrow RR
- Bayesian Lasso \rightarrow Lasso

To avoid overfit, the QTLs detection by GWAS is performed at each repetition on the training population

INRA

Model 📕 GBLUP 🔜 RR 📃 QGBLUP 📃 lasso

S - results

High predicting ability (> 0.7) depending on the traits

- GBLUP and Ridge Regression are equivalent
- QGBLUP and BayesLasso are less performant in most cases

Phenology > Quality > Forage Yield

> Why the models without QTLs performed better ?

- Some false positive QTLs remain
- \rightarrow higher threshold
- Not enough accessions so the QTL effect is over-estimated
- \rightarrow More data will be add with future projects

INRA@

Conclusion

> Take home message

- 1. The infinitesimals methods showed higher quality of prediction
- 2. The models integrating the QTLs information (QGBLUP) or based on feature selection were less efficient
- 3. The traits linked to :
 - 1. phenology tended to be better-predicted (0.62 ± 0.17) than
 - 2. forage yield (0.45 ± 0.19) and quality (0.43 ± 0.14) .
- 4. Some QTLs explaining a high percentage of phenotypic variation were found, and represents good candidates for further investigation
 - 1. Some QTLs match for several traits or in less than 1000 bp between locations

With a population with a larger genetic diversity we have reached higher predicting abilities than in the previous studies in alfalfa.

INRA@

> Thanks for your attention !